Impact of molecular processing in the hinge region of therapeutic IgG4 antibodies on disposition profiles in cynomolgus monkeys.
نویسندگان
چکیده
The IgG4 isotype antibody is a potential candidate for immunotherapy when reduced effector functions are desirable. However, antigen binding fragment (Fab) arm exchange leads to functional monovalency with potentially reduced therapeutic efficacy. Mutagenesis studies suggested that the CH3 domain and not the core hinge is dominantly involved in in vivo molecular processing. This work investigated whether stabilization of the core hinge of a therapeutic IgG4 antibody by mutation of Ser228 to Pro (S228P) would be sufficient to prevent in vivo Fab arm exchange. In vitro experiments evaluated the influence of different levels of oxidation-reduction conditions in buffer and serum on Fab arm exchange (swapping) of wild-type (WT) IgG4 and IgG1 and of IgG4 S228P, which included a sterically neutral second mutation (Leu235 replaced by Glu). The objective of single-dose pharmacokinetic experiments in cynomolgus monkeys was to determine whether the mutation reduced IgG4 swapping in vivo. The results indicated that S228P mutation did not completely prevent Fab arm exchange in vitro in buffer under reducing conditions relative to IgG4 WT. The immunoassay findings were confirmed by mass spectrometry measurements. Results of the in vivo studies suggested that the therapeutic IgG4 WT antibody exchanged Fab arms with endogenous cynomolgus monkey IgG4, resulting in bispecific IgG4 antibodies with monovalency for the therapeutic target. In contrast, serum from cynomolgus monkeys dosed with the IgG4 mutant was virtually free of swapped IgG4. In conclusion, the results indicated that IgG4 swapping in vivo was markedly attenuated by S228P mutation.
منابع مشابه
Assessing in vivo dynamics of multiple quality attributes from a therapeutic IgG4 monoclonal antibody circulating in cynomolgus monkey
Characterization of biopharmaceutical proteins and assessment and understanding of the critical quality attributes (CQAs) is a significant part of biopharmaceutical product development and is routinely performed in vitro. In contrast, systematic analysis of the quality attributes in vivo is not as widespread, although metabolism and clearance of multiple variants of therapeutic proteins adminis...
متن کاملInsights into the Impact of Heterogeneous Glycosylation on the Pharmacokinetic Behavior of Follistatin-Fc-Based Biotherapeutics.
Follistatin 315 heparan sulfate-binding deficient mutant human IgG4 Fc fusion (FST-ΔHBS-Fc) is a follistatin (FST) based Fc fusion protein currently being developed as a novel therapy for several potential indications, including muscle wasting. Previous assessments of the pharmacokinetics and therapeutic activity of FST-ΔHBS-Fc have shown a close association of the exposure-response relationshi...
متن کاملPreexisting Antibodies to an F(ab′)2 Antibody Therapeutic and Novel Method for Immunogenicity Assessment
Anti-therapeutic antibodies (ATAs) may impact drug exposure and activity and induce immune complex mediated toxicity; therefore the accurate measurement of ATA is important for the analysis of drug safety and efficacy. Preexisting ATAs to the hinge region of anti-Delta like ligand 4 (anti-DLL4) F(ab')2, a potential antitumor therapeutic, were detected in cynomolgus monkey serum, which presented...
متن کاملFunctional, Biophysical, and Structural Characterization of Human IgG1 and IgG4 Fc Variants with Ablated Immune Functionality
Engineering of fragment crystallizable (Fc) domains of therapeutic immunoglobulin (IgG) antibodies to eliminate their immune effector functions while retaining other Fc characteristics has numerous applications, including blocking antigens on Fc gamma (Fcγ) receptor-expressing immune cells. We previously reported on a human IgG2 variant termed IgG2σ with barely detectable activity in antibody-d...
متن کاملFcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys.
The pH-dependent binding of IgGs to the neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. Enhancing interactions between Fc and FcRn via protein engineering has been successfully used as an approach for improving the pharmacokinetics of monoclonal antibodies (mAbs). Although the quantitative translatability of the in vitro FcRn affinity enhancement to an i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2010